VitaC - Part 3.mp4
An off-the-shelf transparent test tube is used to construct the rigid layer of the sensor body, simplifying (or avoiding) the fabrication of the necessary curved surface. The commercially available tubes are made up of plastic/acrylic or glass, and are sold for experimental or decorative purposes. While initially we experimented with glass tubes, we quickly found that trimming a tube made up of such material is far too complicated. Because of that, we turned to plastic/acrylic tubes. One disadvantage of using the off-the-shelf test tubes, particularly the plastic ones, is that they contain small imperfections resulted from the manufacturing process. An example is the discontinuity between the semi-spherical and cylindrical regions. A second example is that an imprint is often found at the center of the semi-spherical region of the test tube. An alternative approach would be to print the rigid tube using a stereolithography 3D-printer and clear resin; however, proper polishing would be necessary to ensure its optical transparency. For this reason, we did not explore this approach in this work.
VitaC - Part 3.mp4
As shown in Figure 4A, the remaining necessary rigid parts to build the sensor body are a shell, where the camera electronics and LEDs are installed, a sleeve that is glued onto the test tube and tightened to the shell, and a supporting base that is used to bolt the sensor into the fingers of the robot gripper and host the main electronics. Furthermore, a three-part mold is used to fabricate the elastomer with the desired thickness and shape. To fabricate the rigid parts, we take advantage of 3D printing technology. We experiment with printing the parts using both fused filament fabrication (FFF) and stereolithography (SLA) printers, that is, the Anycubic i3 Mega and the Formlabs Form 2. The 3D-printed parts are shown in Figure 4C. The models and further information about the GelTip sensor are available at
(A) Exploded view of the GelTip tactile sensor design. (B) A GelTip sensor, next to a British one pound coin, for relative size comparison. The sensor has a length of approximately 10 cm, its shell has a diameter of 2.8cm, and the tactile membrane has a length of 4cm and a diameter of 2cm. (C) The three-part mold next to the remaining parts used in the GelTip construction. (D) The plastic tube is inserted into the sleeve and then mounted onto the mold, afterwards the tube is measured and trimmed and then the elastomer is poured. (E) The tactile membrane after being de-molded and before being painted.
Having the mold and test tube ready, as shown in Figure 4D, that is, the test tube is inserted into the sleeve and mounted onto the mold; afterwards the tube is measured and trimmed. The silicone for the soft membrane is then poured through the LED slits. Because of the three-part design, once the elastomer is cured, the mold can be opened from the bottom to reveal the tactile membrane, as shown in Figure 4E. We use the same materials as suggested in Yuan et al. (2017), that is, XP-565 from Silicones, Inc. (High Point, NC, USA) and Slacker from Smooth-on Company. After extensive experiments, we find the best ratios to be 1:22:22, that is, we mix 1 g of XP-565 part-A, 22 g of XP-565 part-B, and 22 g of the Slacker. This amount of mixture is sufficient to fabricate two sensor membranes. The ratio part-A/part-B influences the rigidity of the elastomer, that is, higher concentration of part-B produces a softer silicone. The Slacker, on the other hand, contributes to the silicone tackiness. It is necessary to add sufficient Slacker to make the elastomer be able to capture high-frequency imprints such as a fingerprint. However, it will make the silicone sticky if too much slacker is added.
After the elastomer is cured and de-molded, we proceed with painting. The off-the-shelf spray paints tend to form a rigid coat and cracks will develop in the coat when the elastomer deforms or stretches. To avoid these issues, we fabricate a custom paint coat using the airbrush method suggested in Yuan et al. (2017). We mix the coating pigment with a small portion of part-A and part-B of XP-565, with the same ratio used in the elastomer. We experiment with both the Silver Cast Magic from the Smooth-on Company and the aluminum powder (1 μm) from the US Research Nanomaterials, Inc. After mixing them properly, we dissolve the mixture using a silicone solvent until we achieve a watery liquid. The liquid paint is then sprayed onto the elastomer surface using an airbrush. It is essential to apply the paint using low pressure and at a sufficient distance, and have the surface rest between coats, so that a smooth surface finish can be achieved. We use a ratio of 1:20:5 for part-A, part-B and the pigment powder, respectively.
Closed caption support is included as part of their basic function, so you do not need to buy any additional plug-ins or software applications. However, they tend to be expensive, difficult to use and not optimized specifically for captioning tasks.
You can integrate real-time captioning of audio content into meetings and events and present these captions in the new Closed Caption display. This is a key component of the Adobe Connect accessibility initiative to provide WCAG 2.1 AA compliant (including Section 508 and EN 501 349) meetings and assists participants who are deaf or hard of hearing to participate in meetings.
Meeting participants can choose to view the captions, or not, and can customize the caption font size and color for better readability. Each participant can change the size and placement of the floating caption display to best meet their needs.
Note:If a participant who has been promoted to host starts the VITAC stream, and the original host tries to stop the stream, the message, 'Not authorized to stop this VITAC stream, the host that started the stream can stop it' displays.
View captions in a recordingIf you enabled closed captions withing your meeting, then your meeting recording will also provide the same captions and the same options for participants. 041b061a72